Characteristics of Motor Resonance Predict the Pattern of Flash-Lag Effects for Biological Motion

نویسندگان

  • Klaus Kessler
  • Lucy Gordon
  • Kari Cessford
  • Martin Lages
چکیده

BACKGROUND When a moving stimulus and a briefly flashed static stimulus are physically aligned in space the static stimulus is perceived as lagging behind the moving stimulus. This vastly replicated phenomenon is known as the Flash-Lag Effect (FLE). For the first time we employed biological motion as the moving stimulus, which is important for two reasons. Firstly, biological motion is processed by visual as well as somatosensory brain areas, which makes it a prime candidate for elucidating the interplay between the two systems with respect to the FLE. Secondly, discussions about the mechanisms of the FLE tend to recur to evolutionary arguments, while most studies employ highly artificial stimuli with constant velocities. METHODOLOGY/PRINCIPAL FINDING Since biological motion is ecologically valid it follows complex patterns with changing velocity. We therefore compared biological to symbolic motion with the same acceleration profile. Our results with 16 observers revealed a qualitatively different pattern for biological compared to symbolic motion and this pattern was predicted by the characteristics of motor resonance: The amount of anticipatory processing of perceived actions based on the induced perspective and agency modulated the FLE. CONCLUSIONS/SIGNIFICANCE Our study provides first evidence for an FLE with non-linear motion in general and with biological motion in particular. Our results suggest that predictive coding within the sensorimotor system alone cannot explain the FLE. Our findings are compatible with visual prediction (Nijhawan, 2008) which assumes that extrapolated motion representations within the visual system generate the FLE. These representations are modulated by sudden visual input (e.g. offset signals) or by input from other systems (e.g. sensorimotor) that can boost or attenuate overshooting representations in accordance with biased neural competition (Desimone & Duncan, 1995).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

Modified Couple Stress Theory for Vibration of Embedded Bioliquid-Filled Microtubules under Walking a Motor Protein Including Surface Effects

Microtubules (MTs) are fibrous and tube-like cell substructures exist in cytoplasm of cells which play a vital role in many cellular processes. Surface effects on the vibration of bioliquid MTs surrounded by cytoplasm is investigated in this study. The emphasis is placed on the effect of the motor protein motion on the MTs. The MT is modeled as an orthotropic beam and the surrounded cytoplasm i...

متن کامل

Predictability and the dynamics of position processing in the flash-lag effect.

Several models have been proposed to account for the flash-lag effect. One criterion for evaluating alternative models is to consider the separate effects of motion predictability and flash predictability. We first established that flash predictability has an impact on the size of the perceived spatial offset in the flash-lag illusion. We then examined motion predictability by varying the consi...

متن کامل

Analogous Mechanisms Compensate for Neural Delays in the Sensory and the Motor Pathways Evidence from Motor Flash-Lag

Motor behaviors require animals to coordinate neural activity across different areas within their motor system. In particular, the significant processing delays within the motor system must somehow be compensated for. Internal models of the motor system, in particular the forward model, have emerged as important potential mechanisms for compensation. For motor responses directed at moving visua...

متن کامل

Perceptual compression of space through position integration.

The mechanism of positional localization has recently been debated due to interest in the flash-lag effect, which occurs when a briefly flashed stationary stimulus is perceived to lag behind a spatially aligned moving stimulus. Here we report positional localization observed at motion offsets as well as at onsets. In the 'flash-lead' effect, a moving object is perceived to be behind a spatially...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010